This is an explanation of the question N .3 that we got on Friday 11/11.

Question: A wire of gold is 1.00 km long and has diameter of 1.00 mm . The resistivity of gold is $22.4 \mathrm{n} \Omega \mathrm{m}$. What is the resistance of the wire?

Explanation: So, first we may start by looking at what we already know. We know the length, the diameter, and the resistivity of wire. Look at the table below:

Length	$1.00 \mathrm{~km}=1.00 \times 10^{3}$
Diameter	$1.00 \mathrm{~mm}=1.00 \times 10^{-3}$
Resistivity	$22.4 \mathrm{n} \Omega \mathrm{m}=22.4 \times 10^{-9}$

So, as chapter 1 says, 1.00 km is the same as $1.00 \times \mathrm{km}$. "km" is only a variable. It is as " x " (10x). In our equation, it is important to include these variables.

To write our equation, we have to know which formulas we will use. At our formulae booklet you will find $R=\rho \frac{l}{A}$. We also need a formula to calculate the area of the wire. $A=\pi r^{2}$

So, here is the answer:

$$
R=\rho \frac{l}{A}=22.4 n \Omega m \times \frac{1.00 \mathrm{~km}}{\pi \times 0.5 \mathrm{~mm}^{2}}=22.4 \times 10^{-9} \times \frac{1.00 \times 10^{3}}{\pi \times\left(0.5 \times 10^{-3}\right)^{2}}
$$

1. As we know, radius is equal to diameter divided by two.
2. Once again, $m m$ counts as a variable. Therefore, it is in brackets.
3. To calculate this equation, use your calculator. To get resistance, write

$$
22.4 \times 10^{\wedge}(-9) \times\left(1.00 \times 10^{\wedge} 3\right) \div\left(\pi \times\left(0.5 \times 10^{\wedge}(-3)\right)^{\wedge} 2\right)
$$

The result should be " 28.5205658 ". However, we only have 3 significant figures in our question, so the answer should be " 28.5 ". The resistance is therefore $\underline{28.5 \Omega}$

Improvement:

As you might see, we have lot of numbers that actually could be crossed out. We can simplify the equation:

$$
\begin{aligned}
22.4 \times 10^{-9} \times & \frac{1.00 \times 10^{3}}{\pi \times\left(0.5 \times 10^{-3}\right)^{2}}=22.4 \times \frac{10^{-9} \times 10^{3}}{\pi \times 0.5^{2} \times 10^{-6}}=22.4 \times \frac{10^{-6}}{\pi \times 0.5^{2} \times 10^{-6}}= \\
& =22.4 \times \frac{1}{\pi \times 0.25}=\frac{22.4}{0.25 \pi}
\end{aligned}
$$

As you see, we do not need to write the whole thing as it was done in the previous example. Just simplify!

